DENEY NO:	2
DENEY ADI:	Artırım tipi MOSFET karakteristiği
AMAÇ:	Deney yoluyla artırım tipi MOSFET karakteristiğinin elde edilmesi
ÖN ÇALIŞMA:	VGS(ON)=3.5 V, ID(ON)=220 mA, VT=2 V parametrelerine sahip bir MOSFET'in transfer
	karakteristiğini V_{GS} 0 V – 4 V aralığı için çiziniz.

DENEY BASAMAKLARI:

1. DRAİN (AKAÇ) KARAKTERİSTİĞİNİN ELDE EDİLMESİ

- a) Şekil 1'deki devrede;
 - V_{GG}=+5 V, [Artı beş volt]

R1=68 Kohm ,

R₂=100 Kohm **potansiyometre** [üç bacaklı devre elemanı],

*V*_{DD}=0-15 V arası değişken DC gerilim kaynağıdır[masadaki büyük board üzerinde bulunan].

Şekil 2. V_{DD} Gerilim Kaynağı

Şekil 4. Potansiyometre

 $\pmb{Sekil 3. V_{GG} gerilim Kaynağı}$

Resim 2. Probların Braedboard üzerindeki bağlantı şekli

Şekildeki devreyi kurmaya başlamadan önce;

Deney sırasında **V**_{DD} değişken kaynağındaki gerilimi sürekli ve arttırarak değiştireceğiz.

Bu yüzden, sürekli multimetre ile ölçmek yerine, board üzerindeki, **LED gösterge üzerinde** görmek daha pratik olacaktır.

Bunu yapmak için, V_{DD} değişken gerilim kaynağından alacağınız [+] ve toprak noktası uçlarını öncelikle büyük board üzerinde ayrı bir şekilde başka bir noktalara götürünüz.

Daha sonra, o noktalardan, board üzerindeki LED göstergelerin yanında bulunan deliklere kablo yardımıyla bağlayınız.

Resimde de gösterildiği gibi, V_{GG} için **+5 Volt** aldığınız yerdeki toprak noktasını <u>kullanmanıza</u> <u>gerek yoktur.</u> Şekil 2' de gördüğünüz (A) ve (v) sembolleri, sırasıyla, ampermetre ve voltmetreyi göstermektedir.

Bu adımı tamamladan, diğer adıma lütfen geçmeyiniz.

1-) Şekil 2' deki Devreyi kurarken, **kesinlikle enerji altında çalışmayınız** ve *MOSFET' in bacaklarını birbirinden uzak noktalara koyunuz.*

2-) Şimdi Devreyi, V_{GG} voltajından başlayarak kurunuz. Daha sonra R₁ direncini, V_{GG}' ye seri bağlantı yaparak o şekilde devam ediyoruz.

a-) Devreyi kurarken, R2 potansiyometresinin bir bacağının, R1 'e bağlandığına,

b-) R₂ potansiyometresinin orta bacağının, MOSFET'in *Gate* ucuna bağlandığına,

c-) R₂ potansiyometresinin diğer bacağını ise, MOSFET' in *Source* ucuna ve *toprağa* bağlandığına dikkat ediniz.

d-) V_{DD} voltajının (+) tarafının, MOSFET' in Drain ucuna bağlandığına dikkat ediniz.

3-) Devrenizi kurduktan ve kontrol ettikten sonra, görevli hocanızı yanınıza çağırınız.

4-) Devrede herhangi bir problem yok ise, Multimetrenizi DC voltaj kademesine alınız.

5-) Daha sonra, **V**_{GS} voltajını ölçmek için, multimetrenin *kırmızı kablosunu*, MOSFET'in G ucuna; *siyah kablosunu* da MOSFET' in S ucuna kablo yardımı ile bağlayarak, paralel yapınız **[G ve S uçlarını kesinlikle kısa devre <u>yapmayınız</u>!!!].**

6-) Devrenizi şimdi tekrar kontrol ediniz. Herhangi bir kablonun diğerine değmediğinden emin olunuz.

7-) Devrenize șimdi enerji verebilirsiniz.

8-) R_2 potansiyometresi üzerinde bulunan kolu sağa ya da sola çevirerek G ve S terminalleri arasındaki gerilimi, $V_{GS}=1$ V olacak şekilde ayarlayınız.

9-) Devredeki enerjiyi şimdi kesiniz. Multimetrenin problarını devreden çıkarınız.

10-) Bir sonraki adımda I_D akımını ölçeceğimiz için, **Multimetrenizi akım ölçmek için, mA** konumuna alınız [çok önemli].

11-) I_D akımını ölçmek için, öncelikle, V_{DD} gerilim kaynağının [+] ucunu, board üzerinde başka bir noktaya taşıyın.

12-) Daha sonra, Multimetrenizin kırmızı probunu, V_{DD} gerilim kaynağının [+] ucuna, siyah probu ise, MOSFET' in Drain ucuna seri bir şekilde bağlamalısınız [şekil 2'deki devreye iyi bakın!].

13-) Şimdi devrenize enerji verebilirsiniz.

EEM 332 ELEKTRONİK-II DERSİ LABORATUVAR DENEY FÖYÜ

14-) V_{DD} değişken gerilim kaynağını değiştirerek, **0 V**'dan başlayarak 2 V aralıklarla **10 V**'a kadar artırmak suretiyle her artımda I_D akımını ölçünüz.

15-) Ölçtüğünüz I_D akımlarını **Tablo 3.1'deki** ilk sütuna kaydediniz ve **enerjiyi kesiniz**.

Taşıdığınız V_{DD}' nin [+] ucunu eski yerine geri getirip, bağlamayı unutmayınız!

Şimdi aynı işlemleri yukarıdaki gibi, V_{GS} = 2.2 Volt için tekrar yapacağız. Bunun için,

16-) Multimetrenizi devreden çıkarınız. Multimetrenizi tekrar Voltaj ölçmek için, **DC voltaj kademesine alınız.**

17-) Daha sonra, **V**_Gs voltajını ölçmek için, multimetrenin kırmızı ve siyah problarını MOSFET'in G ve S uçlarına paralel bir şekilde kablo yardımı ile bağlayınız.

18-) Şimdi devrenize enerji veriniz.

19-) R_2 potansiyometresi üzerindeki kolu sağa ya da sola doğru çevirerek V_{GS} =2.2 V olacak şekilde ayarlayınız.

20-) Devredeki enerjiyi tekrar kesiniz ve Multimetrenizi devreden çıkarınız.

21-) Multimetrenizi akım ölçmek için, mA konumuna alınız [çok önemli].

22-) I_D akımını ölçmek için, Multimetrenizi V_{DD} gerilim kaynağının [+] ucu ile ile MOSFET' in Drain ucu arasına seri bir şekilde bağlamalısınız. Bunu yapmak için önce, V_{DD}' yi başka bir noktaya taşımayı unutmayınız ["10" nolu adımdaki gibi].

23-) Şimdi devrenize enerji veriniz.

24-) V_{DD} değişken gerilim kaynağını **0 V**'dan başlayarak **2 V** aralıklarla **10 V'a** kadar arttırmak suretiyle, I_D akımını ölçünüz.

Ölçtüğünüz I_D akımlarını **Tablo 3.1'deki ikinci sütuna** kaydediniz ve **enerjiyi kesmeyi unutmayınız**.

e) Yukarıdaki işlemlerin aynısını şimdi, $V_{GS} = 2.2 \text{ V}$; $V_{GS} = 2.6 \text{ V}$ ve $V_{GS} = 3 \text{ V}$ için tekrarlayınız ve her bir V_{GS} değeri için, multimetre yardımı ile bulduğunuz I_D akımını **Tablo 3.1**'deki sonraki sütun gruplarına kaydediniz ve **enerjiyi kesiniz.**

f) **Tablo 3.1**'deki verileri kullanarak akaç karakteristiği grafiklerini *Grafik 3.1* ölçekli alanına çiziniz.

2. TRANSFER (AKTARIM) KARAKTERİSTİĞİNİN ELDE EDİLMESİ

a) Şimdi devrenizdeki V_{DD}'yi, **V**_{DD}=10 V olacak şekilde ayarlayın. Bu voltajı hiç değiştirmeyeceğiz. Şimdi devrenini enerjisini kesin.

b) V_{GS} gerilimini, daha önceki adımlarda yaptığımız gibi, **1 V' tan** başlayarak **3 V'a** kadar, değiştiriniz [**1 V**; **2 V**; **2.2 V**; **3 V için**].

Her değiştirdiğiniz V_{GS} değeri için, I_D akımını ölçün ve[Multimetrenizi mA konumuna almayı unutmayınız] ölçtüğünüz I_D akımlarını **Tablo 3.2'**ye kaydedin.

SİİRT ÜNİVERSİTESİ • MÜHENDİSLİK-MİMARLIK FAKÜLTESİ • ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ

EEM 332 ELEKTRONİK-II DERSİ LABORATUVAR DENEY FÖYÜ

GRUP ÜYELERİ	1.	2.	3.	4.	GRUP	PUAN
NUMARA						
İMZA						

Tablo 3.1. Akaç karakteristiği verileri

V _{GS} =	= <u>1</u> V	$V_{GS}=$	<u>2.2 </u> V		$V_{GS}=$	<u>2.6 </u> V	$V_{GS} =$	<u>3</u> V		$V_{GS}=$ V			$V_{GS}=$	V
V _{DD}	I_D	V _{DD}	ID		V _{DD}	ID	V _{DD}	ID		V _{DD}	I_D		V _{DS}	I_D
(Volt)	(mA)	(Volt)	(mA)		(Volt)	(mA)	(Volt)	(mA)		(Volt)	(mA)		(Volt)	(mA)
				1					1					
												1		
				1					1					
				1								1		
				J								J		

<i>V_{DD}</i> =10 V	V _{GS} (Volt)	1V	2 V	2.2V	3V		
	I _D (mA)						

Tablo 3.2 Transfer karakteristiği Verileri

SİİRT ÜNİVERSİTESİ • MÜHENDİSLİK-MİMARLIK FAKÜLTESİ • ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ